# Publications

A radiation-resistant diamond-based detector for registration of fluxes of particles of cosmic radiation with low linear energy transfer is developed and investigated. The device may be used to register gamma radiation of water-moderated, water-cooled nuclear energy reactors. The characteristics of a detector when exposed to beta radiation are determined and modeling of the signals of the device when exposed to beta and gamma radiation is performed. The use of a multi-layer diamond structure makes it possible to increase the signal-to-noise ratio and expand the dynamic range of measurements of the linear energy transfer of cosmic radiation particles.

A mathematical model of an ionizing-radiation monitor based on diamond detectors has been developed. Experimental investigations of the monitor were carried out, and, using their results, the model was verified and optimized. In was demonstrated thet the developed model makes it possible to calculate data of sensor measurements with an accurancy of 10% or better. These results will be used to reconstruct cosmic-radiation spectra according to the output data of the monitor.

For the space transport systems with a long uptime, consideration was given to the method of adaptive filtering in the problem of restoring the parameters of cosmic radiation flows from the measurement data. Proposed were a mathematical model and an algorithm for optimization of the nonstationary control systems whose state is measured against the noisy background. The algorithms of parametric optimization were based on a modified Wiener–Hopf equation and sensitivity functions.

The article shows that large artificial neural networks can be used for mutual ordering of a set of multi-dimensional patterns of the same nature (handwritten text, voice, smells, taste). Each neural network must be pre-trained to recognize one of the patterns. As a measure of ordering one can use the entropy of patterns "Strangers" that are input to a neural network trained to recognize only examples of the pattern "familiar". The neural network after training reduces the entropy of the examples of the pattern "Familiar" and increases the entropy of examples of pattern "Stranger." It is shown that the entropy measure of the ordering always has two global minima. The first minimum corresponds to the pattern "Familiar", the second to the inversion of the pattern "Familiar". It is also shown that the Hamming distance between the patterns belonging to two different groups (groups of the two global minima) is always as large as possible.

The mathematical model of ionizing radiation monitor based on diamond detectors has been developed. Experimental studies of the monitor have been carried out. The model of the monitor has been verified and optimized using the results of these studies. The model is shown to provide for the estimation of the output data of the monitor accurate to better than 10%. The results obtained would be used in recovering the cosmic radiation spectra by the monitor output data.

*Due to the complexity and large dimensions of the task of digital system design debugging decomposition by method of modeling as a whole, algebraic models of decomposition methods are proposed, namely, methods of vertical and horizontal structure decomposition, functional decomposition, decomposition based on error types. An algebraic model of the digital systems software is presented. The software is considered as a semi group of operators.*

Systems to monitor asteroids and space debris to predict and help prevent space-linked emergency situations are still in their infancy and this article presents an overview of methods, technologies and software used in creating a data analysis system for monitoring potentially dangerous asteroids and man-made space debris. A description of the system structure and its functional components are given. The components discussed allow for automatic operational assessment of potential space-borne threats and a prediction of the aftermath should any such objects collide with Earth

This paper addresses the issue of designing control systems for parallel computing structures. Designing methodology described grounds on Petri nets to model computing systems of different dimensionality. Then a description of the Petri nets models (PN-models) vertex projection procedure, which allows constructing new models with differing structural and dynamical properties, is presented. Afterwards the existence of scale system that enables us to compare different PN-models quantitatively is demonstrated. And a comparison criteria for structural and dynamical properties of PN-models is proposed.

A diamond-based single-element ultraviolet potodetector that may be used in spectrophotometric equipment is developed. The characteristics of the spectral sensitivity of the detector as a function of tha appllied voltage are presented. The capabilities gained from the used of similar devices for systems used in the analysis of the composition of multicomponent mixture are considered.

We demonstrate that classical quadratic forms are not able to solve the problem of recognizing highdimensional images. The "deep" GalushkinHinton neural networks can solve the problem of highdimensional image recognition, but their training has exponential computational complexity. It is technically impossible to train and retrain a "deep" neural network rapidly. For mobile "artificial nose" systems we proposed to employ a number of "wide" neural networks trained in accordance with (GOST R 52633.52011). This standardized learning algorithm has a linear computational complexity, i.e. for each new smell image a time of about 0.3 seconds is sufficient for creating and training a new neural network with 2024 inputs and 256 outputs. This leads to the possibility of the rapid training of the artificial intelligence "artificial nose" and a gradual expansion of its database consisting of 10 000 or more trained artificial neural networks.

This paper contains a description of methods and software tools for creation of the information-analytical system for monitoring hazardous space objects. The paper presents the structure of the system and a description of its functional components thet enable rapid assessment of the NEO hazard and forecast of the effects of dengerous celestial bodies colliding with the Earth. The results of the system's operation regarding the modeling the motion of spact objects are also included in this work.

A mathematical model is developed for a multichannel sensor unit based on diamond detectors in a device for monitoring the parameters of cosmic ray fluxes. The output signals from these sensors are modelled as they detect ionizing radiation from outer space in different spacecraft orbits with various levels of solar activity.

A mathematical model is developed for a multichannel sensor unit based on diamond detectors in a device for monitoring the parameters of cosmic ray ﬂ uxes. The output signals from these sensors are modelled as they detect ionizing radiation from outer space in different spacecraft orbits with various levels of solar activity.

This paper proposes an approach to k-bounded Petri nets behavioral equivalence checking using the model checking method and mainstream verifier nuSMV. For the comparison of behavior of two nets, an add-in net is introduced which performs a supervisory control of these two nets. The approach uses an implicit word-to-word comparison of labeled Petri net languages with invisible transitions when computing CTL temporal logic formulas. The technique of Petri nets equivalence checking in SMV is briefly discussed followed by a simple case study.

In this work we study influence of various factors on stability of ionizing radiation detectors installed in the cosmic ray spectrometer (SCR) based on diamond detectors of ionization radiation (DDIR). Diamond detectors for SCR are made of single crystals of synthetic diamond type IIa. Diamond detectors were studied successively in three different experiments. Checking detector stability with ambient temperature increased up to 70 degrees Celsius was the first experiment. At next we change the geometry of detector irradiation by rotating nuclear source around it and measuring changes in detector count rate. And last one experiment was about checking the phenomenon of polarization by prolonged detector irradiation by ionizing radiation of various types and energies. The study revealed the presence of the strong influence of the polarization effect on the work of diamond detectors for registration of ionizing particles with short mean free path (in our experiment they were the alfa-particles of 238Pu). In this work correspondence of the experimental results of the "rotation" the source around the detector with the data obtained by simulation in GEANT-4 was shown.

The review highlights the parameters of multilayer diamond detector for monitoring space radiation based on CVD diamond technique. The paper specifies the results of measuring charge output spectrum of single and double layer diamond detectors. Diamond detector serves to on-board radiation monitoring systems of spacecraft having lifetime increase in up to 20?25 years. The use of a diamond detector multi-layer structure makes it possible to enhance the amplitude of charge output spectrum, to expand the detector dynamic range, as well as to improve the accuracy and information content of radiation monitoring systems.

The article describes the device for selective registration of electrons, protons and heavy ions fluxes from the solar and galactic cosmic rays in the twelve energy ranges, built on a base of diamond detector. The use of the diamond detectors allowed for the creation a device for registration of cosmic particles fluxes at the external spacecraft surface with the resource not less than 20 years. Selective detector is aimed for continuous monitoring of radiation situation on board the spacecrafts, in order to predict the residual life of their work and prompt measures to actively protect the spacecraft when the flow of cosmic particles is sharply increased.